Há três tipos de razões que fizeram de Galileu o pai de uma nova forma de encarar a natureza: em primeiro lugar, deu autonomia à ciência, fazendo-a sair da sombra da teologia e da autoridade livresca da tradição aristotélica; em segundo lugar, aplicou pela primeira vez o novo método, o método experimental, defendendo-o como o meio adequado para chegar ao conhecimento; finalmente, deu à ciência uma nova linguagem, que é a linguagem do rigor, a linguagem matemática.
Ao dar autonomia à ciência, Galileu fê-la verdadeiramente nascer. Embora na altura se lhe chamasse «filosofia da natureza», era a ciência moderna que estava a dar os seus primeiros passos. Antes disso, a ciência ainda não era ciência, mas sim teologia ou até metafísica. A verdade acerca das coisas naturais ainda se ia buscar às Escrituras e aos livros de Aristóteles.
E não foi fácil a Galileu quebrar essa dependência, tendo que se defender, após a publicação do seu livro Diálogo dos Grandes Sistemas, das acusações de pôr em causa o que a Bíblia dizia. Esta carta de Galileu é bem disso exemplo:
Posto isto, parece-me que nas discussões respeitantes aos problemas da natureza, não se deve começar por invocar a autoridade de passagens das Escrituras; é preciso, em primeiro lugar, recorrer à experiência dos sentidos e a demonstrações necessárias. Com efeito, a Sagrada Escritura e a natureza procedem igualmente do Verbo divino, sendo aquela ditada pelo Espírito Santo, e esta, uma executora perfeitamente fiel das ordens de Deus. Ora, para se adaptarem às possibilidades de compreensão do maior número possível de homens, as Escrituras dizem coisas que diferem da verdade absoluta, quer na sua expressão, quer no sentido literal dos termos; a natureza, pelo contrário, conforma-se inexorável e imutavelmente às leis que lhe foram impostas, sem nunca ultrapassar os seus limites e sem se preocupar em saber se as suas razões ocultas e modos de operar estão dentro das capacidades de compreensão humana. Daqui resulta que os efeitos naturais e a experiência sensível que se oferece aos nossos olhos, bem como as demonstrações necessárias que daí retiramos não devem, de maneira nenhuma, ser postas em dúvida, nem condenadas em nome de passagens da Escritura, mesmo quando o sentido literal parece contradizê-las.
Galileu, Carta a Cristina de Lorena
Foi também Galileu quem, na linha de Bacon, utilizou pela primeira vez o método experimental, o que lhe permitiu chegar a resultados completamente diferentes daqueles que se podiam encontrar na ciência tradicional. Um exemplo do pioneirismo de Galileu na utilização do método experimental é o da utilização do famoso plano inclinado, por si construído para observar em condições ideais (ultrapassando os obstáculos da observação directa) o movimento da queda dos corpos. Pôde, desse modo, repetir as experiências tantas vezes quantas as necessárias e registar meticulosamente os resultados alcançados. Tais resultados devem-se, ainda, a uma novidade que Galileu acrescentou em relação ao método indutivo de Bacon: o raciocínio matemático. A ciência não poderia mais construir-se e desenvolver-se tendo por base a interpretação dos textos sagrados; mas também não o poderia fazer por simples dedução lógica a partir de dogmas teológicos:
Ao cientista só se deve exigir que prove o que afirma. (...) Nas disputas dos problemas das ciências naturais, não se deve começar pela autoridade dos textos bíblicos, mas sim pelas experiências sensatas e pelas demonstrações indispensáveis.
Galileu, Audiência com o Papa Urbano VIII
Tratava-se de uma ciência cujas verdades deveriam ter um conteúdo empírico e que podiam ser não só expressas, mas também demonstradas numa linguagem já não qualitativa mas quantitativa: a linguagem matemática. Foi o que aconteceu quando Galileu, graças ao referido plano inclinado, pôs em prática o novo método e começou a investigar o movimento natural dos corpos. O resultado foi formular uma lei universal expressa matematicamente, o que tornava também possível fazer previsões. Diz ele:
Não há, talvez, na natureza nada mais velho que o movimento, e não faltam volumosos livros sobre tal assunto, escritos por filósofos. Apesar disso, muitas das suas propriedades (...) não foram observadas nem demonstradas até ao momento. (...) Com efeito, que eu saiba, ninguém demonstrou que o corpo que cai, partindo de uma situação de repouso, percorre em tempos iguais, espaços que mantêm entre si uma proporção idêntica à que se verifica entre os números ímpares sucessivos começando pela unidade.
Galileu, As Duas Novas Ciências
A velocidade da queda dos corpos (queda livre), é de tal modo apresentada que pode ser rigorosamente descrita numa fórmula matemática. Não seria possível fazer ciência sem se dominar a linguagem matemática. Metaforicamente, é através da matemática que a natureza se exprime:
A filosofia está escrita neste grande livro que está sempre aberto diante de nós: refiro-me ao universo; mas não pode ser lido antes de termos aprendido a sua linguagem e de nos termos familiarizado com os caracteres em que está escrito. Está escrito em linguagem matemática e as letras são triângulos, círculos e outras figuras geométricas, sem as quais é humanamente impossível entender uma só palavra.
Galileu, Il Saggiatore
A descrição matemática da realidade, característica da ciência moderna, trouxe consigo uma ideia importante: conhecer é medir ou quantificar. Nesse caso, os aspectos qualitativos não poderiam ser conhecidos. Também as causas primeiras e os fins últimos aristotélicos, pelos quais todas as coisas se explicavam, deixaram de pertencer ao domínio da ciência. Com Galileu a ciência aprende a avançar em pequenos passos, explicando coisas simples e avançando do mais simples para o mais complexo. Em lugar de procurar explicações muito abrangentes, procurava explicar fenómenos simples. Em vez de tentar explicar de forma muito geral o movimento dos corpos, procurava estudar-lhe as suas propriedades mais modestas. E foi assim, com pequenos passos, que a ciência alcançou o tipo de explicações extremamente abrangentes que temos hoje. Inicialmente, parecia que a ciência estava mais interessada em explicar o «como» das coisas do que o seu «porquê»; por exemplo, parecia que os resultados de Galileu quanto ao movimento dos corpos se limitava a explicar o modo como os corpos caem e não a razão pela qual caem; mas, com a continuação da investigação, este tipo de explicações parcelares acabaram por se revelar fundamentais para se alcançar explicações abrangentes e gerais do porquê das coisas — só que agora estas explicações gerais estão solidamente ancoradas na observação e na medição paciente, assim como na descrição pormenorizada de fenómenos mais simples.
Paulo Autran "A Vida de Galileu" - Teatro Guaíra, Curitiba 1989
*Texto por Carlos Marques e Helena Serrão
Nenhum comentário:
Postar um comentário